Survival of dragonfly *Libellula fulva* males according to their mating status: a four year study

Noémi Szállassy, Zoltán D. Szabó, Beáta H. Nagy

Summary: The dragonfly is one of the favoured experimental groups of behavioural ecology. They can be marked individually and can be easily tracked without considerable disturbing. The use of mark-recapture models for measuring the survival and recapture rate of individuals allows a better understanding of the processes of population dynamics. During four seasons (2000-2003), a closed *Libellula fulva* (Müller, 1764) population was studied along a creek in Eastern Hungary. The movement of marked and solitary males was observed with binoculars and it was recorded along a 350 meter natural section of the Kutas-channel. Our aim was to analyse the recapture and survival rate of two male groups of scarce chaser (*Libellula fulva*) by using mark-recapture models. The model-selection showed that the recapture rate of mated males was higher than of solitary ones. Survival rate of mating males was also higher in every year than the survival of the solitary individuals. This result suggest, that even if it is costly for males to occupy and defend a territory, finding, guarding and mating a female, the succesful males have still a higher survival rate.

Key words: survival rate, recapture rate, mating success, *Libellula fulva*

Introduction

The dragonfly (*Odonata*) is one of the favoured experimental groups of behavioural ecology. Similarly to birds they can be characterised by numerous behavioural patterns, they are excellently adapted to aerial motion, they manoeuvre outstandingly, and as true predators they can catch their prey in the air. In terms of behavioural ecology the easiest way of examining the individuals of a dragonfly population is the mark-recapture method, which became frequently used as models for supra-individual biology during the past few decades (PajuNen 1962). The development of newer models, and the emergence of softwares, suited to them, accelerated this process.

In Zygoptera the survival rate of males is higher than of females in the pre-reproductiv period (Anholt 1991), in the reproductiv period (Bick and Bick 1963, Banks and Thompson 1985, Koenig and Albano 1987) or in both (Ueda 1987, Bennett and Mill 1995). In many species of Coenagrionidae males have greater survival rate (Garrison and Hafernik 1981, Fincke 1982, Anholt et al. 2001). In other sudies there are no differences between the survival rates of sexes (Hamilton and Montgomerie 1989, Córdoba-Aguilar 1994, Beukema 2002) and we found only a few studies where females have greater survival rates (Robinson et al. 1983, Cordero 1993). Generally the recapture (resighting) rate of males is higher than of females (Anholt 1997, Anholt et al. 2001, Andrés and Cordero 2001), which can be explained with the cryptical behabiour of females. In the case of *Lestes disjunctus* Selys 1862 females have greater recapture rate (Duffy 1994). There are a lot of studies in odonatological literature concerned to study of demographi- cal parameters (Corbet 1952, van Noordwijk 1978, Robinson 1983, Hamilton and Montgomerie 1989, Beukema 2002). In adult Zygoptera the sexual rate is male biased (Garrison and Hafernik 1981, Hamilton and Montgomerie 1989, Maxwell 1998), which can be explained by the fact that males can be easily captured in the field, females have more cryptical behavior, females and males did not emerge synchronously, the mortality in females is higher in the pre-reproductiv period and the pattern of distribution differed between the two sexes (Garrison and Hafernik 1981, Nylin et al. 1995). In a study with *Lestes sponsa* Hansemann, 1823 Stoks (2001) showed that males are present in a great number at the rendezvous- and mating site, due to the strong temporary emigration of females and to heterogenous recapture rate of males. This aspect can
be explained by the fact that females are present at
the mating site only for mating and oviposition, the
feeding place is different from the mating site and for
gametogenesis females need more energy and time
than males for spermatogenesis (Anholt 1992, Banks
and Thompson 1987). In Anisoptera species the higher
recapture rate of males is strongly correlated with site
fidelity and territorial behaviour.

To estimate the survival and mortality rate of indi-
viduals, the longevity and population size, it is neces-
sary to mark specimens individually. The specimens
then can be easily tracked without disturbing them.
The demographic parameters can be estimated using
the recapture or resighting rate of marked individuals.
At the beginning this method was used to estimate the
population size, nowadays it is also used to estimate and
compare the survival and recapture rate of individ-
uals. The mark–recapture (resighting) method was
used in many odonatological studies to estimate the
sex ratio, the survival and the recapture rate (Fincke
1982, Koening and Albano 1985, Van Buskirk 1987,
Hamilton and Montgomery 1989), the dispersal rate
and to study the site fidelity of males (Borror 1934,
Corbet 1999).

Our aim was to analyse the recapture and survival rate of two male groups of scarce chaser (Libellula fulva) by using mark-recapture models.

Material and methods

The study site of our research is a canalised creek
next to the Romanian–Hungarian border, called Kutas
main channel. The channel came into existence as a
result of governing the bed of Csikos stream, and dur-
ing the examination period only a 350 metres long
reach remained in its natural state. The bed of the
main channel before and after this part is a burrowed
and straight one, but these parts of the channel are in a
dominant trap-dependence [(N(0.1) signed statistic for
model had the low-
parameters

Model

S(g) P(g)	734.5	0.54	12	306.8
S(g) P(t)	736.5	0.20	11	311.0
S(g) P(g+t)	737.2	0.14	4	326.6
S(g+t) P(g+t)	737.7	0.11	20	291.8
S(g+t) P(g+t)	753.5	0.00	28	288.2

In 2001 210, in 2002 168 and in 2003 186 individuals
were marked. In case of every observation the follow-
ing data were noted: the number of marked

be explained by the fact that females are present at
the mating site only for mating and oviposition, the
feeding place is different from the mating site and for
gametogenesis females need more energy and time
than males for spermatogenesis (Anholt 1992, Banks
and Thompson 1987). In Anisoptera species the higher
recapture rate of males is strongly correlated with site
fidelity and territorial behaviour.

To estimate the survival and mortality rate of indi-
viduals, the longevity and population size, it is neces-
sary to mark specimens individually. The specimens
then can be easily tracked without disturbing them.
The demographic parameters can be estimated using
the recapture or resighting rate of marked individuals.
At the beginning this method was used to estimate the
population size, nowadays it is also used to estimate and
compare the survival and recapture rate of individ-
uals. The mark–recapture (resighting) method was
used in many odonatological studies to estimate the
sex ratio, the survival and the recapture rate (Fincke
1982, Koening and Albano 1985, Van Buskirk 1987,
Hamilton and Montgomery 1989), the dispersal rate
and to study the site fidelity of males (Borror 1934,
Corbet 1999).

Our aim was to analyse the recapture and survival rate of two male groups of scarce chaser (Libellula fulva) by using mark-recapture models.

Material and methods

The study site of our research is a canalised creek
next to the Romanian–Hungarian border, called Kutas
main channel. The channel came into existence as a
result of governing the bed of Csikos stream, and dur-
ing the examination period only a 350 metres long
reach remained in its natural state. The bed of the
main channel before and after this part is a burrowed
and straight one, but these parts of the channel are in a
dominant trap-dependence [(N(0.1) signed statistic for
model had the low-
parameters

Model

S(g) P(g)	734.5	0.54	12	306.8
S(g) P(t)	736.5	0.20	11	311.0
S(g) P(g+t)	737.2	0.14	4	326.6
S(g+t) P(g+t)	737.7	0.11	20	291.8
S(g+t) P(g+t)	753.5	0.00	28	288.2

In 2001 210, in 2002 168 and in 2003 186 individuals
were marked. In case of every observation the follow-
ing data were noted: the number of marked
trap-dependence = –1.96, p = 0.048]. This difference disapeared when performing the TEST2.CT separately for the two male groups [mated males: Log-Odds-Ratio statistics for trap-dependence = –1.24, df = 7, p (two-sided) = 0.21; solitary males: LOR statistics for trap-dependence = –1.29, df = 7, p (two-sided) = 0.19]. During the model selection there was only a small difference between AIC value of first three models. Comparing models we can observe that the difference between AIC weights is small too: between the first and second model is 0.03, between the second and the third model is 0.01 (Table 2).

In 2002 we resighted twice or more 75.73% (128 individuals) of marked males (169). The GOF test made on pooled data showed significant difference only in trap-dependence [(N(0.1) signed statistic for trap-dependence = –4.8, p < 0.001). From the test components only the TEST2.CT showed a trap-dependence in both groups [mated males: LOR statistics for trap-dependence = –3.79, df = 13, p (two-sided) < 0.001; solitary males: LOR statistics for trap-dependence = –2.68, df = 13, p (two-sided) = 0.007]. The best model, which had the smaller AIC and the bigger AICc Weight was S(g) P(g*t). According to this model there is a constant difference between the survival of solitary and mated males, in the recapture rate there is group and time interaction. In the Table 3, we present the models with the best fit to our data.

Mated males had greater survival than unmated ones. The recapture rate was higher in the case of mated males, except the 5., 12., 14. and 16 days, when we saw more solitary males (Fig. 2).

According to each model there is a difference between survival of mated and solitary males. In the first and third model it is group and time interaction in the survival, in the second model the survival is group dependent and it is changing with the time. The recapture rate is time dependent in the first model, in the second and third model it is group dependent and it is changing with the time.

In 2003 81.73% of marked males were resighted more than two times. The global GOF test on the general CJS model (S(g*t)P(g*t)) made by the U-CARE program did not show any significant fitting problems, except the signed component of the trap-dependence test made on pooled data [(N(0.1) = -5.1, p < 0.001]. Three test components (TEST3.SR, TEST3.Sm, TEST2.CL)

Table 2. The general Cormack-Jolly-Seber model fitting best the data from 2001 and the models used in paired comparisons, sorted by the Akaiki Information Criteria (AICc) (abbreviations: S – survival rate, P – recapture rate, g – group, t – time).

<table>
<thead>
<tr>
<th>Model</th>
<th>AICc</th>
<th>AICc</th>
<th>No of parameters</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(g*t) P(t)</td>
<td>857.5</td>
<td>0.30</td>
<td>21</td>
<td>320.7</td>
</tr>
<tr>
<td>S(g+t) P(g+t)</td>
<td>857.7</td>
<td>0.27</td>
<td>17</td>
<td>329.8</td>
</tr>
<tr>
<td>S(g*t) P(g+t)</td>
<td>857.8</td>
<td>0.26</td>
<td>23</td>
<td>316.5</td>
</tr>
<tr>
<td>S(g+t) P(g*)</td>
<td>859.2</td>
<td>0.13</td>
<td>28</td>
<td>306.4</td>
</tr>
<tr>
<td>S(g+t) P(t)</td>
<td>861.5</td>
<td>0.04</td>
<td>17</td>
<td>333.7</td>
</tr>
</tbody>
</table>

Table 3. The general Cormack-Jolly-Seber model fitting best the data from 2002 and the models used in paired comparisons, sorted by the Akaiki Information Criteria (AICc) (abbreviations: S – survival rate, P – recapture rate, g – group, t – time).

<table>
<thead>
<tr>
<th>Model</th>
<th>AICc</th>
<th>AICc</th>
<th>No of parameters</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(g) P(g*t)</td>
<td>1428.8</td>
<td>0.93</td>
<td>32</td>
<td>823.7</td>
</tr>
<tr>
<td>S(.) P(g*t)</td>
<td>1435.2</td>
<td>0.04</td>
<td>31</td>
<td>832.4</td>
</tr>
<tr>
<td>S(g+t) P(g*)</td>
<td>1437.4</td>
<td>0.01</td>
<td>43</td>
<td>807.1</td>
</tr>
<tr>
<td>S(g*) P(g*)</td>
<td>1438.3</td>
<td>0.01</td>
<td>48</td>
<td>796.2</td>
</tr>
<tr>
<td>S(g+t) P(g+t)</td>
<td>1438.9</td>
<td>0.01</td>
<td>27</td>
<td>844.9</td>
</tr>
</tbody>
</table>

Fig. 1. The estimation of survival rate of two male groups according to S(g) P(g*t) model

Fig. 2. The estimation of survival rate of two male groups according to S(g) P(g*t) model

Fig. 2. Recapture rate of mated and solitary males according to S(g) P(g*t) model
were not showing any significant fitting problems.

Surprisingly, according to the TEST2.CT component there was a strong ‘trap-happiness’ at the solitary males [N(0.1) LOR statistics for trap-dependence= –3.95, p (two-sided)<0.001] and had a near-significant value in the case of mated males [N(0.1) LOR statistics for trap-dependence = –1.87, p (two-sided)=0.06].

After model selection, the model with best fit to our data was \(S(g)P(t) \), where the survival of two male groups was different (group-effect), the recapture rate varied with time. Due to AIC weight this model fit twice more better to data that the following models (Table 4).

Table 4. The general Cormack-Jolly-Seber model fitting best the data from 2003 and the models used in paired comparisons, sorted by the Akaike Information Criteria (AICc) (abbreviations: \(S \) – survival rate, \(P \) – recapture rate, \(g \) – group, \(t \) – time)

<table>
<thead>
<tr>
<th>Model</th>
<th>AICc</th>
<th>AICc Weights</th>
<th>No of parameters</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(g)P(t))</td>
<td>1715.4</td>
<td>0.48</td>
<td>17</td>
<td>1026.9</td>
</tr>
<tr>
<td>(S(g)P(g+t))</td>
<td>1717.0</td>
<td>0.22</td>
<td>18</td>
<td>1026.4</td>
</tr>
<tr>
<td>(S(g+t)P(t))</td>
<td>1717.2</td>
<td>0.20</td>
<td>28</td>
<td>1005.0</td>
</tr>
<tr>
<td>(S(g+t)P(g+t))</td>
<td>1718.5</td>
<td>0.10</td>
<td>29</td>
<td>1004.1</td>
</tr>
<tr>
<td>(S(gt)P(gt))</td>
<td>1739.3</td>
<td>0.00</td>
<td>50</td>
<td>977.2</td>
</tr>
</tbody>
</table>

According to \(S(g)P(t) \) model, the survival rate of mated males was higher than of solitary ones (Fig. 3).

Discussion

After marking we resighted at least twice more a 65% of marked males, showing that the marking itself had no marked negative effect on individuals. Similarly to our results a higher recapture rate was showed in the case of Haeterina cruentata (RAMBUR, 1842) (64.8%) (CÓRDOBA-AGUILAR 1994) and Ischnura gemina KENNEDY, 1917 (90%) males (GARRISON and HAFFERNIK 1981). In 2000 1/5 (17.59%), in 2001 1/3 (33.86%), in 2002 and 2003 half percent (47.61% and 45.4%) of marked males were seen in copula.

The higher recapture rate of mated individuals over solitary ones can be associated with their territorial behaviour. Territory holders are more conspicuous at oviposition sites where they defend a small area with patrol flights and perching on sites with good visibility options.

The survival rate of mated males was higher in every study year than of solitary ones. A positive correlation between mating success and survival was found in several species: I. pumilio CHARPENTIER, 1840 (CORDERO and ANDRÉS 1999), I. gemina KENNEDY, 1917 (GARRISON and HAFFERNIK 1981), Enallagma hageni (WALSH, 1863) (FINCKE 1982), Coenagrion puella (LINNAEUS, 1758) (BANKS and THOMPSON 1985).

We suggest that individuals of better condition can occupy and defend a territory easily and due to the fact that mating occurs inside the territory, they also can find more easily a pair. The solitary males are less successful, they have smaller survival rate than mated individuals, they probably have greater mortality rate and they emigrate from the study site. Those individuals who have less access to food-sources have less chance to have a territory and to copulate, therefore they have a higher emigration-rate as their succesful conspecifics (LOMNICKI 1978, LAWRENCE 1987).

Based on data from this four year study period we can conclude that even if occupying and holding a territory, attracting, protecting and pairing a female are all costly, the survival of mated males is still higher than of solitary ones.

Acknowledgements

We wish to thank to György DéVai and to Zoltán LÁSZLÓ for their support. This study was carried out with the help of Hortobágy National Park (Hungary).

References

Noémi Szallasz
Babeș Bolyai University
Fac. of Psych. and Sci. of Educ.
Dept. of Math. and Sci. Teaching
Education
Sindicatelor Street 7, 400029
Cluj-Napoca, Romania
szallasz@gmail.com

Zoltán D. Szabó
Babeș Bolyai University
Faculty of Biology and Geology
Dept. of Taxonomy and Ecology
Clinicilor Street 5-7, 400006
Cluj-Napoca, Romania

Beáta H. Nagy
Romanian Ornithological Society (BirdLife Romania)
OP 7, CP 18, 400370
Cluj-Napoca, Romania